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Abstract. We study the perimeter length of self-avoiding surfaces on the square lattice. We 
prove that surfaces with area n, containing h boundary components, have mean perimeter 
length of order n. We arrive at this result by studying the incidence of 4-cycles in 
two-dimensional site animals. 

1. Introduction 

Self-avoiding surfaces have received considerable attention in the literature. Glaus 
(1986, 1988) obtained numerical evidence that surfaces on the simple cubic lattice, 
homeomorphic to discs, may have the same critical exponents as lattice animals. Since 
lattice trees are thought to have the same critical exponents as lattice animals (see, 
for instance, Gaunt et al (1982)), this implies that discs in three dimensions are in 
the same universality class as lattice trees. This suggests that discs are highly ramified 
objects and, in this paper, we present some rigorous results which establish this in two 
dimensions. 

We write Z2 for the two-dimensional hypercubic lattice. A self -avoiding surf ace 
on T2 is a connected set of plaquettes (elementary unit squares), joined along common 
edges so that each edge belongs to either one or two plaquettes and, if precisely two 
plaquettes are incident on a vertex, then they must share an edge. The edges incident 
on only one plaquette form disjoint closed curves in Z2, which we call the boundary 
components of the surface. Let Y, , (h )  be the set of all self-avoiding surfaces in ZZ2 
with h boundary components and n plaquettes. Let the cardinality of Y,,((h) be s,,(h). 

The simplest examples of self-avoiding surfaces in two dimensions are discs, in 
the set Yn( l ) .  The boundary curve of a disc is a polygon of length m and enclosing 
area n, so that we may think of discs as polygons of area n. Polygons on the square 
lattice have been studied for many years and Hiley and Sykes (1961) and Enting and 
Guttmann (1989) have enumerated polygons by perimeter and by area. 

This paper is organised as follows. In section 2 we define surface animals. These 
are site animals dual to self-avoiding surfaces. We point out that the perimeter of 
surfaces with a fixed number of boundary components is related to the numbers of 
4-cycles in the dual animals. We then consider the properties of the 4-cycles in site 
animals (as well as in surface animals). We prove that there are two classes of 4-cycles. 
The first class are those which can be deleted from the animal by removing a single 
vertex without disconnecting the animal. We call these ordinary cycles. The second 
class of 4-cycles are those which we cannot remove without disconnecting the animal; 
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these we call solitary cycles. We also prove that solitary cycles are truly solitary, i.e. if 
two 4-cycles shares an edge, then neither can be solitary. 

In section 3 we study the incidence of ordinary 4-cycles in surface animals. In 
particular, if t!(c) is the total number of site animals, with precisely c ordinary 4-cycles, 
dual to a self-avoiding surface with n plaquettes and h = k + 1 boundary components, 
then we use the results of Madras et a1 (1988) to find bounds on the function 

and show that W ( E )  goes to zero as E goes to 1. We then use this result to prove the 
existence of a positive constant z such that 

where (v,") is the mean perimeter length of a self-avoiding surface with h boundary 
components and area n. We conclude the paper with a few comments in section 4. 

2. Surface and lattice animals 

Let on E 9',,(h). We can consider a lattice animal 7,, dual to on by letting each vertex 
of z,, on the dual lattice (to 2') correspond to a plaquette on on. (We simply replace 
every plaquette on on by a vertex at its midpoint.) If two plaquettes share a common 
edge, then the two vertices in the dual animal are connected by an edge. We call T,, 

a surface animal, and these form a subset of all site animals. Not all site animals are 
surface animals, since the patterns in figure 1 cannot occur in a surface animal because 
that would violate the self-avoiding condition. 

la1 [ bl 

Figure 1. These patterns are forbidden in surface animals, since they do not correspond to 
self-avoiding surfaces. 

A typical surface animal will contain cycles. The smallest cycles will be 4-cycles, 
but larger cycles will in general also occur. An m-cycle, M > 4, is contractible if it is 
composed of 4-cycles. We define all 4-cycles to be contractible. Therefore, no non- 
contractible cycle can be a 4-cycle. The fundamental homotopy group of the surface 
o,, E Y , , ( h )  has ( h  - 1) generators. These are non-contractible closed curves on on. If 
we choose these generators so that they pass through the midpoints of every plaquette 
that they visit on on, and always pass from one plaquette to the next through an 
edge (never through a vertex) then, under the duality transformation, they will map 
to non-contractible cycles on the dual animal T,,. If two non-contractible cycles on T,, 
are in the image of the same homotopy class of a generator on on, then we call them 
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equivalent (it is easily seen that this is an equivalence relation on the non-contractible 
cycles). These definitions divide the non-contractible cycles on T,, into equivalence 
classes, which we call independent cycles. Since the map from the homotopy classes 
of the generators on 6, to the set of independent cycles is a bijection, the number of 
independent cycles is ( h  -- 1 ) .  Let 3: be the set of surface animals with k independent 
cycles and n vertices, dual to the surfaces in the set Y n ( k  + 1 ) .  The number of 4-cycles 
in the animals in 3; is independent of k .  

Let 6, E Y , ( h )  and let v(a,,) be the perimeter length of o,, (the total number of 
edges on the boundary components of 6”). Evidently, v(a,,) = d,  +2d, +3d,,  where d i  is 
the number of ith degree vertices on the surface animal ‘I,, dual to a,. For any animal, 
the number of cycles e’ is given by 

Hence, by using the fact that n = Cidi, we find that 

v(a,) = 2 + 2n - 2c’. (2.2) 

But c’ = h - 1 + e, where c is the number of 4-cycles in T,,, and h the number of 
boundary components on the dual surface a,. Thus 

~(6,) = 2n - 2h - 2c + 4. (2.3) 

We need the following definitions. 

Definition 2.1. Let V be a set of vertices in 9’. The top vertex and the bottom vertex 
of V are found through a lexicographic ordering of the vertices in Y .  

Definition 2.2. Let o be a 4-cycle in T ,  E .F:. If there exists a vertex on o such that 
deleting the vertex will remove o without disconnecting T,,, then we call o an ordinary 
cycle. If o is not ordinary, then we call it a solitary cycle. 

Definition 2.3. The cycle set %? of an animal z,, E Fi is the set of all vertices in T,, which 
are incident on an ordinary 4-cycle. If V is empty, then T ,  has no ordinary 4-cycles. 

We now prove that every solitary cycle is one of the two cases in figure 2. In 
particular, if two 4-cycles share an edge, then they are both ordinary. In addition, all 
4-cycles not sharing an edge with another are ordinary, unless they are one of the cases 
in figure 2. 

Lemma 2.4. Let z,, E 3:. If any two 4-cycles in 7” share an edge, then they are both 
ordinary. Moreover, the only solitary 4-cycles in T,, are those in figure 2. 

ProoJ We give a direct proof by showing that if we cannot delete a 4-cycle, then it is 
one of the cases in figure 2. Let %? be the cycle set of T,, and let t be the top vertex of 
%?. Let the two orthogonal unit vectors in T2 be el and e2. 

By definition, t is incident on an ordinary 4-cycle, and is a vertex of degree 2, 3 or 
4. If t is of degree 2, then we can delete it, erasing the 4-cycle, so we suppose that t is 
of degree 3 or 4. 



1290 E J Janse van Rensburg and S G Whittington 

(0) ib) 

Figure 2. The two solitary 4-cycles in two dimensions. 

Suppose that t is a vertex of degree 3, and without loss of generality, suppose that 
( t  + e , )  is in 5 ,  (while ( t  + e,)  is not). Then ( t  + e ,  - e,)  cannot be in 5,. Consider 
the vertex ( t  - e 2 ) ;  if ( t  - 2e2)  is not in t,, then it is of degree 2, and we can delete it, 
removing the 4-cycle incident on t ,  so suppose that ( t  - 2e,) is in 5,. If ( t  - e ,  - 2e2)  is 
also in z,, then we can also delete ( t  - e 2 ) ,  erasing two 4-cycles, one of which is incident 
on t ,  without disconnecting the animal. So suppose that ( t  - e ,  - 2e2)  is not in 5,.  If 
( t  - 2e ,  - e,)  is also not in z, then the vertex ( t  - e ,  - e,)  is of degree 2, so we can delete 
it to erase the 4-cycle incident on t ,  so let ( t  - 2 e ,  - e 2 )  be in 5,. If ( t - 2 e I )  is also in t,, 
then we can delete the vertex ( t  - e ,  - e,) ,  erasing two 4-cycles without disconnecting 
z,, so suppose that ( t - 2 e 1 )  is not in 5,. If ( t - e ,  + e 2 )  is also not in t,, then the vertex 
( t  - e , )  is of second degree, and we can erase the 4-cycle, so let ( t  - e ,  + e,) be in 7,. We 
have now considered every vertex on the 4-cycle incident on t ,  and showed that if we 
cannot erase it, then it is the 4-cycle in figure 2(a) .  But this is a contradiction, since % 
contains only vertices incident on ordinary cycles, so at some stage in this construction 
we must succeed in erasing the 4-cycle incident on t .  Therefore we cannot have the 
4-cycle in figure 2(a)  incident on the vertex t. By exchanging the unit vectors e ,  and 
e ,  in this argument, we find that 4-cycles like that in figure 2(b)  cannot be be incident 
on t. Therefore, if t is a 3-degree vertex, then the only 4-cycles on which it cannot be 
incident are those in figure 2. Note that these are truly solitary cycles, since they do 
not share an edge with another 4-cycle. 

All that is left to do is to check the case when t is a 4-degree vertex. Then the 
vertices ( t  + e , )  and (t + e,)  are both in t,, and ( t  - e ,  + e 2 )  and ( t  + e ,  - e 2 )  are not in 
7,. The construction is now the same as above. If ( t  - 2e2)  is not in T,, then (t - e 2 )  is a 
second-degree vertex and we can delete the 4-cycle incident on t ,  so let (t  - 2e2)  be in 
7,. If ( t  - e ,  - 2e2) is also in z,, then we can delete ( t  - e 2 ) ,  erasing two 4-cycles without 
disconnecting the animal, so let ( t  - e ,  - 2e2)  not be in 5,. Then ( t  - 2e,  - e 2 )  must be 
in t,, or ( t  - e ,  - e2)  is of degree 2, and we can delete the 4-cycle. If (t  - 2 e , )  is also in 
t,, then we can delete (t  - e ,  - e,) ,  erasing two 4-cycles without disconnecting T,, so let 
( t  - 2 e , )  not be in 5,. But then ( t  - e , )  is of degree 2, so we can delete it, erasing the 
4-cycle incident on t .  Therefore, if t is a 4-degree vertex, then we can always erase the 
4-cycle incident on it by deleting a single vertex. 

To see that the cycles in figure 2 cannot be ordinary we argue as follows. $9 is a 
finite set, and suppose that it contains one of the solitary cycles in figure 2. By the 
arguments above, this cycle cannot be incident on t ,  the top vertex of V, so suppose 
that it is somewhere else in V. We then apply the construction above, every time that 
we delete a vertex to erase the ordinary cycle incident on t ,  the cardinality of V is 
reduced by one, while we find a new top vertex. Thus, after a finite number of deletions, 
the new top vertex will be incident on the solitary cycle, which we cannot remove. This 
is a contradiction (by the definition of W). 
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Let S k ( c )  be the set of surface animals dual to surfaces in 9’ , , (k+ 1) with precisely 
c ordinary 4-cycles and any number of solitary cycles. Let the cardinality of S : ( c )  be 

3. 4-cycles and perimeter length 

Let t:( [ e n ] )  be the total number of surface animals with k independent cycles, n vertices, 
precisely rsnl ordinary 4-cycles and any number of solitary cycles. Define 

(3.1) 

for all E in [O,l). It is a tedious but straightforward exercise to show that 
limn-= (tk(ren1))”” exists, is log-concave in (0 , l )  and continuous in [0,1). How- 
ever, since we do not require that result here, we only consider (3.1) and prove that is 
enough to give us our desired results. To continue, we need a result for edge animals 
due to Madras et al (1988). 

Lemma 3.1 (Madras et a1 1988). Let a,,([enl) be the number of edge animals with [ ~ n l  
cycles and n vertices. Then the limit 

exists for any positive fixed integer I ,  is log-concave in (0,l)  and continuous in [0, 1). 
Moreover 

lim 4(e) = 1 
E - + -  

Lemma 3.2. 

k lim y ( E )  = 1. 
E - + -  

Proof yk(e) is bounded from above by 4 ( ~ ) .  We prove this by constructing an injection 
from surface animals with c ordinary 4-cycles and k independent cycles into the set of 
edge animals with c + k cycles. This is accomplished by removing a particular edge, for 
example the top edge, from each solitary cycle of the surface animal (see figure 3). The 
lemma then follows from lemma 3.1. 

Lemma 3.3. yk(0)  2 JF, where p > 1 is the growth constant of self-avoiding walks. 

Proof: That ~ ‘ ( 0 )  is bounded from below by f i  is seen by an injection from self- 
avoiding walks with step length 2 into t:(O) (if n is odd, then we consider walks of 
length n - 1, and concatenate a single vertex on the top vertex of each walk). 

To prove the result for y’(O), we consider polygons of step length 2 and length 
n (n even) or (n - 1) ( n  odd). If n is odd, we concatenate a single vertex onto every 
polygon. For yk(0 ) ,  k > 1, we consider the set of polygons with step length 2 and 
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r 
la1 

I 
ib i  

Figure 3. A surface animal with two ordinary cycles (0) and two solitary cycles (S) and its 
associated edge animal obtained by deleting the top edge- in each solitary cycle. 

length ( n  + 8 - 8k) (n  even) or (n  + 7 - 8k) ( n  odd). We then concatenate (k - 1) 8-cycles 
onto each polygon (and an extra vertex if n is odd). 

Since Y' (E)  is not identically equal to 1 in [0, l), but goes to 1 as E + 1, we have 
the following result. 

Corollary 3 .4 .  There exists an E,  in [0, 1) such that 

o I E, = max{Wk(E) = max{vk(oc))) < 1. 
& E 

This result implies that in the n + 30 limit all except exponentially few surface 
animals will have at most [Eon] ordinary 4-cycles, provided that we fix the number of 
independent m-cycles. Suppose that an animal has [En1 ordinary 4-cycles. Then the 
maximum number of solitary cycles (c,) it may have (since each solitary cycle takes 
four vertices) is 

Thus, from (2.3), the perimeter length of a surface with h boundary components dual 
to a surface animal with [En] ordinary 4-cycles is bounded from below by 

(3.3) 

We thus find the following theorem. 

Theorem 3.5. There exists a constant z > 0 in two dimensions such that 

b,") liminf - 2 z =- 0 
n - a  n 

where (v,") is the mean perimeter length of a surface with n plaquettes and h boundary 
components. 
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ProoJ Evidently 

as we see from equation (3.3). Both the denominator and the numerator have n terms, 
each term growing exponentially in n. The terms growing fastest are those with largest 
growth constant, that is, yk(&,) ,  where E, < 1.  Thus 

Obviously, since 2n 2 v i  we have 

If we imply equation (3.4) with the relation -, then we can write 

(v ,")  - n. 

(3.4) 

(3.5) 

4. Conclusions 

We have established rigorously that the perimeter of self-avoiding surfaces (with a fixed 
number of boundary components) grows proportionally to the area of the surface, 
where proportionally means in the sense of equation (3.4). 

The results in section 3 agree with those of Enting and Guttmann (1989) obtained 
by enumerating polygons by area and by perimeter. The message from these results 
is that self-avoiding surfaces in two dimensions are highly ramified objects; every 
plaquette on the surface will have an edge on the perimeter with positive probability. 
These results do not imply that a surface will becorile disconnected with probability 
one (in the large-n limit) if we delete a plaquette at random. On the contrary, a pattern 
theorem for discs (Madras 1989) implies that, at least in the case h = 1 ,  E, > 0 (that is, 
V I ( & )  is strictly increasing in some interval [O,O + a) ,  6 > 0). This implies that 

(4) lim sup - c 2. 
n-cc n 

Therefore, with positive probability, a plaquette will have less than two edges on 
the perimeter of the disc, and if we delete it, we will not necessarily disconnect the 
animal. We expect these arguments to apply to surfaces with more than one boundary 
component too. 

The existence of the limit limn+m (v,h)/n was not established in this study. This is an 
interesting problem, but may be very hard to prove. Rigorous bounds on E, (theorem 
3.5) ; would be useful, especially for comparison to numerical simulations. 
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